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LETTER TO THE EDITOR 

Annihilation of immobile reactants on the Bethe lattice 
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Department of Physics, Clarkson University, Potsdam, New York 13699-5820, USA 

Received 28 May 1993 

Abstract. Two-particle annihilation reaction. A t A  + inert, for immobile reactants on the Bethe 
lattice is solved exactly for the initially random distribution. The process reaches an absorbing 
state in which no nearest-neighbour reactants are left. The approach of the concenmtion to the 
limiting value is exponential. The solution reproduces the known one-dimensional result which 
is further extended to the reaction A + B -t inecl 

Recent studies of reaction-diffusion systems have emphasized fluctuation effects and 
breakdown of the standard chemical rate equations in low dimensions. For the simplest 
reactions of two-particle coagulation, A + A + A, and annihilation, A + A -+ inert, on the 
one-dimensional lattice, several exact results have been reported [1-13]. In the diffision- 
limited, instantaneous-reaction case, these processes show non-mean-field power-law decay 
of the A-particle density. 

Another solvable limit, in one dimension [ 141, is the case of no diffusion at all. Generally 
such models of immobile reactants have received less attention in the recent literature [I& 
161. The reason is that unless longer-range reactions are allowed for [15,16], the time 
dependence involves exponential relaxation to an absorbing state rather than power-law 
behaviour typical of the fast-diffusion reactions. Thus there are no universal fluctuation 
effects involved. 

On the other hand, immobile-reactant systems provide an example of freezing in 
an absorbing state with an explicitly non-universal, initial-condition-dependent behaviour 
persistent at all times and, again, not consistent with the mean-field rate equations. It is 
therefore of interest to derive exact results whenever possible. Thus far, they were available 
only in one dimension [14]. In this work we report an exact solution for A + A  + inert on 
the Bethe lattice. We also derive exact results for the reaction A +.B + inert, limited to 
one dimension. 

Examination of the one-dimensional solution of A + A -+ inert, [14], suggests 
close similarity to the models of random sequential adsorption [17-191. Specifically, 
the annihilation reaction resulting in removal of two nearest-neighbour fixed reactants is 
equivalent to ‘deposition’ of a ‘dimer’ of two empty (reacted) sites. The two processes 
are dual to each other in that nearest-neighbour pairs of sites available for deposition 
comespond to unreacted pairs of reactants. Mathematically, the only difference is in the 
initial conditions. In deposition, the lattice is usually assumed empty at time t = 0 which 
would correspond to the full occupancy for reaction. 

This connection to random sequential adsorption models suggests that exact solutions 
can be sought for models of multiparticle annihilation reactions corresponding to n-mer 
deposition 1191, and for models formulated on high-connectivity lattices such as the Bethe 
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lattice, etc; see [ lS,20,21]. In this work we consider the Bethe-lattice case; the methods of 
[20,21] are adapted for reactions. Besides notational differences, this essentially amounts 
to a more careful treatment of random initial conditions. The latter is achieved by a method 
different from the techniques used in  deposition model studies [20-23]. Since the Bethe 
lattice of coordination number 2 is identical to the one-dimensional lattice, we obtain the 
d = 1 solution as well. However, further simplification in d = 1 also allows us to solve 
exactly the reaction A + B -+ inert. 

The Bethe lattice of coordination number z > 2 can be viewed as an interior part of the 
infinite Cayley tree: each site is connected by bonds to z nearest-neighbour sites, and there 
are no closed loops formed by bonds. In fact the details of the lattice connectivity are not 
important for our considerations. However, we disregard any end-effects. Since the number 
of ‘boundary’ sites in a finite-number-of-generations Cayley tree grows proportionally to 
the total number of sites provided z > 2 (i.e. there is branching in each generation), the 
boundary effects can be profound when long-range spatial correlations are present such as 
at phase transitions, both static [24] and dynamical [25]. The model considered here does 
not have any ‘dangerous’ spatial correlations; size effects can be safely ignored. 

Consider a k-site connected cluster on the Bethe  lattice.^ One interesting feature of a 
loopless lattice, shared with the d = 1 lattice for which z = 2, is that in such a cluster the k 
sites are connected by exactly k - 1 internal bonds. This statement is well known and easily 
established by induction: each new site can only be connected to one existing cluster site, 
by one bond, because loops are not possible. Another useful conclusion is that the number 
of bonds shared by the cluster sites and the nearest-neighbour sites immediately outside the 
cluster under consideration is zk - 2(k - I ) .  Here zk is the total number of neighbours 
seen by all the k cluster sites, while the term 2(k - 1) subtracts the number of neighbours 
internal to the cluster (twice the number of bonds). 

In the model of immobile reactants we assume that the lattice sites are initially occupied 
at random with probability p,  and empty with probability I - p .  The initial reactant density 
per site is c(0) = p.  and we would like to calculate the time dependence of the density c ( t )  
at later times f > 0, given that each nearest-neighbour reactant pair annihilates with the 
rate R per u n i t  time. In fact, it is convenient to absorb tJie rate i n  the dimensionless time 
variable 

T = R t .  (1) 

Similar to the random sequential adsorption studies [17,22] and some recent results 
for particle-exchange dynamical models [26,27], we consider the probability pk(7) that a 
connected k-site cluster is fully occupied by reactants at time f. The configuration of the 
sites which are nearest neighbour but exterior to the cluster can be arbitrary. Thus, initially, 

At times r > 0, the quantities Pk(7) remain the same for all cluster topologies on a 
loopless lattice, provided the initial conditions are topology independent. This is because 
the topology dependence is not generated dynamically by the evolution equations for the 
Pk(r).  Indeed, their time variation is only determined by the number of possible reaction 
events within the cluster, which is equal to the number of bonds, k - 1, and the number 
of possible reaction events in which the reacting pair has one site within the cluster and 
another outside the cluster. The latter again is not dependent on the cluster topology for 
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loopless clusters. We argued earlier that the number of such pairs is zk -2 + 2. Thus, the 
time dependence can be obtained from the relations 

Here the first term is self-explanatory. In the second term, the probability is used 
because a larger cluster must be actually occupied in order for a reaction event involving a 
site outside the original k-site cluster to proceed. 

Relations (3) apply for all k > 1. The most interesting quantity is Pt ( r )  = c(T). It is 
expected to decrease in time but remain finite as r -+ 00. All other probabilities are 
expected to vanish for large times. 

The solution of the recursion relations (3) can be obtained by various methods. Perhaps 
the simplest is to note that the ansatz 

where u(0) = p. eliminates the k dependence. Indeed, substitution in (3) shows that the 
solution of the form (4) is possible provided 

dc 
d r  

zuc. - = _  

The solution is 

For z = 2 the d = 1 solution is obtained either as a limit of (8) or directly, 

(9) -2p(l-e-')  
C,=Z = pe 

An interesting feature of expressions (8) and (9) is the explicit nonlinear dependence of the 
surviving reactant density for all times on the initial density p. The approach to the limiting 
density as r + 00 is exponential, - e-7. 

We now turn to the strictly one-dimensional case. Additional restrictions on the cluster 
topology now allow solution of the two-species reaction A+B --f inert. Let us assume that 
initially the d = 1 lattice sites are occupied by reactant species A with probability 01, and 
by species B with probability b,  where 01 + ,5' < 1. The sites are empty with probability 
1 - 01 - p .  Nearest-neighbour AB and BA pairs react with rate R; see (I). 

As before, we consider the probability that a k-site-long cluster is 'fully reactive'. Let 
Ak(r )  denote the fraction of k-site clusters which are fully filled, with reactants in the 
configuration ABAB.. ., i.e. the leftmost site is A and the sequence is fully alternating. 
Similarly, let &(r)  denote the fraction of k-site clusters of the type BABA.. ., with the 
leftmost site B and otherwise fully alternating order. The state of the neighbour sites outside 
the k cluster is not important in the definition of these probabilities which are conditioned 
only on the internal cluster configuration. 
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Let us introduce the quantities 

w = 3 (IK + B )  

P = @  

where the notation p in (11) will become clear later on. Then initially we have 

k A~even(0) = Bk-ewoK') = P 

Ak-odd(O)/IK = Bk-odd(o)/B = P'-'. 

Let us denote the concentrations, per site, of reactant species A and B by a(s)  = A] ( T )  

and b(r) B ~ ( T ) ,  respectively. We have 

a(0) = IK (14) 

b(O) = B (15) 

a ( T )  - b(T) = (Y - B. (16) 

The latter relation is obvious. Thus we only have to calculate the sum a + b. It proves 
useful to introduce the quantities 

(17) P k ( T )  = [Ak(r) f Bdr)1/2 

so that the sum a + b is given by ZP1. 
Now the probabilities A i  and Bk satisfy the relations 

(k - 1)Ab - Ak+I - &+I (18) 
dAk _ = _  
dT 

Here the first term corresponds to internal pairs reacting, the second term corresponds to the 
rightmost site reacting with an occupied external site, while the third term in both relations 
corresponds to the leftmost site reacting 'externally'. 

For Pk we get, by summing (18) and (19), 

( k  - 1)pk - 2pk+1 (20) 

which is, in fact, identical to the d = 1 random sequential adsorption recursion [ 17,19,22], 
as well as to the z = 2 variant of (3). However, the initial conditions are more complicated, 

d p k  _ = _  
d r  

The solution is obtained by methods similar to solving the Bethe-lattice recursions. We 
try forms similar to (4), 
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These, when substituted in (20), yield coupled first-order differential equations which can 
be solved explicitly to give 

The reactant concentrations then follow as 

a(s) = f r 0 1  - b + (p  + w)e-2P('-e") - (p  - w)e2~(I-e-')] 

b(s) = + (p  + w)e-*~(l--e") - (p  - w)e*P(l-e-')] 

(26) 

(27) 

where the parameters are related via (10) and (1 1). 
As in the fast-diffusion case, which was not solved exactly even in d = 1 but 

only analysed asymptotically [7,28], the functional form of the concentration is different 
depending whether the initial concentrations are equal or not, although the difference here 
is less spectacular. For 01 = f i  (= w = p) ,  the time dependence of  each of the species 
concentrations is identical to the d = 1 result (9). The time dependence via the double- 
exponential expressions entering the general results (26) and (27) is also similar to (9) with 
the effective concentration given by the geometrical mean p ;  see (1 1). However, for 01 # p 
the full time dependence is more complicated than for the single-species reaction, involving 
both the double-exponential term and its inverse. 

In summary we have presented exact solutions for two-particle annihilation reaction on 
the Bethe lattice. For the coordination number z z 2, results were reported for the single- 
species case, In d = 1, where z = 2, we reproduced the known exact single-species result 
and extended the solution to two-species reaction. 
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